
BIOINFORMATICS Vol. 20 no. 13 2004, pages 2122–2134
doi:10.1093/bioinformatics/bth212

Speeding up whole-genome alignment by
indexing frequency vectors

Tamer Kahveci∗, Vebjorn Ljosa and Ambuj K. Singh

Department of Computer Science, University of California, Santa Barbara, Santa
Barbara, CA 93106-5110, USA

Received on June 21, 2003; revised on January 29, 2004; accepted on February 8, 2004

Advance Access publication April 8, 2004

ABSTRACT
Motivation: Many biological applications require the compar-
ison of large genome strings. Current techniques suffer from
high computational and I/O costs.
Results: We propose an efficient technique for local alignment
of large genome strings. A space-efficient index is computed
for one string, and the second string is compared with this
index in order to prune substring pairs that do not contain
similar regions. The remaining substring pairs are handed
to a hash-table-based tool, such as BLAST, for alignment.
A dynamic strategy is employed to optimize the number of disk
seeks needed to access the hash table. Additionally, our tech-
nique provides the user with a coarse-grained visualization of
the similarity pattern, quickly and before the actual search.The
experimental results show that our technique aligns genome
strings up to two orders of magnitude faster than BLAST. Our
technique can be used to accelerate other search tools as well.
Availability: A web-based demo can be found at http://
bioserver.cs.ucsb.edu/. Source code is available from the
authors on request.
Contact: tamer@cs.ucsb.edu

INTRODUCTION
The growth in the amount of genomic information has spurred
increased interest in large-scale comparison of genetic strings.
We propose an efficient algorithm for aligning large genome
strings. For one of the strings, we construct an index structure,
called F-index, which is ∼2% of the size of database. Next,
we construct a boolean match table by partitioning one of the
strings into substrings and searching these substrings in the
F-index of the other string. The columns of the match table
correspond to substrings of the first genome, the rows to sub-
strings of the second genome. An entry in the match table is
marked as true if the corresponding substrings potentially con-
tain similar patterns, and false otherwise. Finally, we divide
the match table into either horizontal or vertical slices, and
give each slice to BLAST (Altschul et al., 1990), or any other
alignment tool, for processing. The size of the slices is such

∗To whom correspondence should be addressed.

that the BLAST computation fits in main memory. We call
our technique MAP, for match-table-based pruning.

Experimental results show that MAP runs up to two orders
of magnitude faster than BLAST without decreasing the out-
put quality. Furthermore, MAP can work well even with small
memory sizes. This drastic reduction in CPU and I/O cost
makes homology searches viable on desktop PCs. The filter-
ing and scheduling techniques of MAP can easily be used
to speed up and reduce the memory requirements of any of
the current local alignment tools. MAP also provides the user
with a coarse-grained visualization of the similarity pattern
between the strings prior to the actual search.

RELATED WORK
The dynamic programming solution to the problem of find-
ing the best alignment between two strings of lengths m and n

runs in O(mn) time and space (Needleman and Wunsch, 1970;
Smith and Waterman, 1981). For large strings, this technique
is infeasible in terms of both time and space. Myers (1986)
improved the time and space complexity to O(rn), where r is
the amount of allowed error, by maintaining only the required
part of the distance matrix. However, for large error rates, r

is O(m), so the complexity is still O(mn). SIM (Huang and
Miller, 1991), which uses dynamic programming to find all
the alignments, is extremely slow for large strings. GLASS
(Batzoglou et al., 2000) accelerates the dynamic program-
ming solution by finding exactly matching long substrings
first, but the time and space complexity are still high, since
the extraction of k-mers is required.

Many heuristic-based search tools have been developed to
align strings faster. They fall into two categories: hash-table-
based tools and suffix-tree-based tools.

Some of the important hash-table-based tools are FASTA
(Pearson and Lipman, 1988), BLAST, MegaBLAST (Zhang
et al., 2000), BL2SEQ (Tatusova and Madden, 1999),
WU-BLAST (Gish, 1995), SENSEI (States and Agarwal,
1996), FLASH (Califano and Rigoutsos, 1993), PipMaker
(BLASTZ) (Schwartz et al., 2000), PatternHunter (Ma et al.,
2002), and BLAT (Kent, 2002). These techniques are similar
in spirit: they construct a hash table on one of the strings, and

2122 Bioinformatics 20(13) © Oxford University Press 2004; all rights reserved.

http://

Speeding up whole-genome alignment

insert all substrings of a certain length l. The value of l varies
between the tools and for different applications (e.g. BLAST
uses l = 11 for nucleotides and l = 3 for proteins). The tools
start by finding exactly matching substrings (known as seeds)
of length l using this hash table. In a second phase, the seeds
are extended in both directions, and combined, if possible, in
order to find better alignments. The main difference between
the tools is that they use different seed lengths and seed exten-
sion strategies. Current hash-table-based search tools handle
short queries well, but become very inefficient, in terms of
both time and space, for long queries.

A number of homology search tools are based on suffix trees
and derivatives, see Gusfield (1997). These include MUMmer
(Delcher et al., 1999), QUASAR (Burkhardt et al., 1999),
REPuter (Kurtz and Schleiermacher, 1999) and AVID (Bray
et al., 2003). QUASAR builds a suffix array on one of the
strings, and counts the number of exactly matching seeds
using this suffix array. If the number of seeds for a region
exceeds a prespecified threshold, the region is searched using
BLAST. REPuter builds a suffix tree on a string to find repe-
titions directly. MUMmer builds the suffix tree on both of the
strings to find maximal unique matches. There are two signi-
ficant problems with the suffix-tree approach: (1) Suffix trees
manage mismatches inefficiently. They are good for highly
similar strings, but fail to recognize more distant homolo-
gies. (2) Suffix trees have a high space overhead. The suffix
tree in MUMmer, e.g. uses 37n bytes of memory, where n

is the input length (Delcher et al., 1999), although with care-
ful implementation, this can be reduced to 8n. AVID (Bray
et al., 2003) handles mismatches and gaps by using a variant
of the Smith–Waterman algorithm once the anchors have been
selected with the help of suffix trees.

CHAOS (Brudno and Morgenstern, 2002) indexes k-mers
using a threaded trie, which is a cross between a suffix tree
and a hash table in spirit. A threaded trie is a tree structure
that stores one node for each common prefix of all the k-
mers in one string. Each node also contains a pointer, called a
back pointer, to the next k-mer. LAGAN (Brudno et al., 2003)
and DIALIGN (Morgenstern, 1999; Morgenstern et al., 1998)
employ CHAOS to find anchors for global alignment. Brudno
et al. (2003) also use CHAOS to find glocal alignment, which
is a combination of global and local alignments.

All the tools mentioned above require data structures larger
than the database—some of them more than two orders of
magnitude larger. This makes them infeasible for large-scale
genome comparison. In contrast, our data structures fit in main
memory: the size of the F-index is only ∼2% of the database
size, and the match table can be adapted to whatever amount
of main memory is available.

ALGORITHMS
Our technique is based on representing substrings of the
two genomes by points in a multi-dimensional integer space,

which we call frequency space. This transformation allows
for efficient computation of an upper bound for the alignment
score between the substrings represented by these points in the
frequency space. If the score for two points in the frequency
space is lower than a user-defined cutoff value, the actual
alignment score of the corresponding substrings is also lower
than the cutoff value; hence, the costly process of aligning the
strings can be avoided.

In this section, we first describe the transformation from
string space to integer space. Second, we explain the con-
struction of the F-index, a data structure which groups nearby
points, thereby allowing for further efficiency improvement.
Third, we present an algorithm for computing an upper bound
for the alignment score in frequency space. Finally, we give
an algorithm for fast comparison of a set of points (corres-
ponding to the substrings of a string) to an F-index built on
another string.

Frequency space and F-index
Let s be a string from an alphabet �, and let σ = |�|. The
frequency vector, fs , of s is defined as the σ -dimensional
vector whose entries are the number of occurrences of the
letters in � (Kahveci and Singh, 2001). For DNA strings,
the alphabet is � = {A, C, G, T, N} (the letter N stands for
unknown). Therefore, the frequency space of a DNA string
has five dimensions. For example, if CTACCNTTAG is a DNA
string, then its frequency vector is [2, 3, 1, 3, 1] ([#As, #Cs,
#Gs, #Ts, #Ns]).

Two strings that are equal clearly have the same frequency
vector. It also seems intuitively true that two strings that are
similar have similar frequency vectors, but the exact nature of
this similarity requires some explanation. It is instructive to
note how the frequency vector of a string changes in response
to the three basic edit operations: inserting a letter increases
one element of the vector, and deleting a letter decreases one
element; finally, replacing one letter with another increases
one element of the frequency vector and decreases another.
Based on these observations, we define a distance measure
which we call frequency distance. The frequency distance
FD(u, v) between two frequency vectors u and v is the min-
imum number of basic edit operations required to turn a string
the frequency vector of which is u into a string the frequency
vector of which is v.

It is clear that the frequency distance between two strings
is a lower bound of the edit distance between them. (If the
frequency distance between two strings is d, at least d edit
operations are necessary to change one string into the other.)
This can be used to prune a search for similar strings based on
their frequency vectors as follows: for each string, we com-
pute its frequency vector. Then, instead of computing the edit
distance between two strings, just compute their frequency
distance, which requires less computation and main memory.
If the frequency distance is above a certain threshold, we know
that the edit distance must also be above the threshold; only

2123

T.Kahveci et al.

if the frequency distance is below the threshold do we compare
the actual strings.

In order to find similar regions between two genomes, one
can compute, for each genome, the frequency vectors for all
substrings that are of a certain length w, the window size.
Where frequency vectors from the two genomes are close
together, it indicates that the corresponding regions of the
string may align well. The choice of w affects the precision
and speed of the technique: a larger w leads to faster computa-
tion at the risk of missing short alignments. Experiments show
that a w around 4000 produces almost-perfect results quickly.
The problem with this approach is that a large number of fre-
quency vectors are generated. To address this problem, we
aggregate vectors from one genome into an index structure
which we call the F-index.

An F-index is a set of σ -dimensional boxes. For a num-
ber of consecutive frequency vectors from the same string,
we compute a box—their minimum bounding rectangle—
and add it to the index. The maximum number of points in
each box is termed its box capacity. Various strategies for
choosing the box capacity will be discussed later; for now,
we use a fixed box capacity of c. Then, the F-index built on
a string s using window size w consists of �(|s| − w + 1)/c�
boxes. For each box in the F-index, we store only its lowest
and highest coordinates, starting location of the first sub-
string in the box, and the box capacity. As the box capacity
increases, the number of boxes in the F-index decreases.
Thus, the memory usage of the F-index goes down. However,
boxes containing more points are generally larger, leading
to more false hits. We use a box capacity of 1000 in our
experiments.

Computing scores in frequency space
Because of its popularity, we use BLAST-style alignment
scores instead of edit distances. The score of an alignment
of two strings depends on three parameters: Smatch, Smismatch

and SN. The first two are used when two letters have a match
or mismatch, respectively. The third is used when a letter is
aligned to an unknown letter (N). Whereas Smatch is positive,
the other two are negative, Smismatch more so than SN.1

The score of the best alignment between a string q and the
substrings of a string s can be found by dynamic programming,
but this takes O(|q| · |s|) time. Instead, we propose a new
distance function called the frequency score, FSw(v, B), to
find an upper bound to the score of the best alignment in
O(σ) time, where w = |q|, v is the frequency vector of q

and B is the box that covers the frequency vectors of the
substrings of s of length w. If FSw(v, B) is less than a user-
defined cutoff, then the actual alignment score is also less

1Mismatch penalties are assessed instead of gap penalties. This guarantees
that the computed score is an upper bound, even though the transformation
to the frequency domain discards information about the order of the letters in
each window.

Fig. 1. Procedure FSw(v, B) for computing the best score of the
alignment between a string x and a set of strings χ , where v is the
frequency vector of x and B is the box that covers the frequency
vectors of the strings in χ .

than that cutoff, thus the costly dynamic programming can be
avoided. The algorithm that computes FSw(v, B) is given in
Figure 1.

The algorithm starts by finding the number of mismatches
(steps 1 and 2). Variables inc and dec count the total num-
ber of increments and decrements one needs to perform on
the entries of v to shift it into B. Variable sum stores the
sum of the entries of v when it is shifted into B. This is
repeated for each of the first σ −1 dimensions; the σ th dimen-
sion represents Ns, which will be dealt with in step 5. Since
each increment or decrement of v corresponds to a mismatch,
the upper bound on the total number of matches is computed
by subtracting the number of mismatches from w, the num-
ber of letters in the aligned string. The scores for matches
and mismatches are computed using the upper bound on the
number of matches and the number of mismatches (steps 3
and 4).

Notice that sum = w if there are no Ns, i.e. if the
fifth dimensions are zero for both the point and the box. If
sum �= w, their difference is a lower bound on the number of
alignments with N, and we assess the appropriate penalties in
step 5. Finally, step 6 returns the smallest of the two computed
upper bounds.

In the worst case, the distance computation takes 18
integer additions, 5 integer multiplications and 10 integer
comparisons. This is negligible compared to classic dynamic-
programming algorithms with quadratic time complexity in
terms of the alignment length.

2124

Speeding up whole-genome alignment

Constructing the match table
In order to align two genomes, we first create an F-index on
one of them and extract a number of points (frequency vectors)
from the other. The point extraction procedure is similar to the
one used when constructing the F-index, but instead of sliding
the window one letter at a time, we shift it by w letters. A string
q therefore yields �|q|/w� points.

The next step is finding all box-point pairs that match,
meaning that their FSw scores are above the cutoff value.
Computing the FSw score for all boxes of the first string and
all points of the second string would take too long. Notice,
however, that a point and a box with a high FSw score appear
close together in frequency space. We exploit this to reduce
the number of FSw computations by partitioning the frequency
space and comparing the points and boxes in each partition
separately.

The space is first partitioned along the first dimension.
The resulting partitions are then partitioned again along the
second, third and fourth dimensions. We do not partition
along the fifth dimension because the corresponding letter,
N, is rare. We use an equi-depth histogram-based technique
(Piatetsky-Shapiro and Connell, 1984) to ensure that each
partition contains an equal number of points.

For inexact matches to be detected reliably, we grow each
box in each direction by an amount equal to the cutoff value
before deciding which partitions it intersects. If this was not
done, it would lead to false negatives, as points and boxes
that are very close but in two different partitions would not be
reported.

A higher number of partitions leads to fewer score calcu-
lations (and, consequently, shorter running time) because it,
for a given box, eliminates the need to compute the score
with points in partitions that are not intersected by the box.
Figure 2 illustrates this: without partitioning, 12 score cal-
culations would be necessary for the 3 points and 4 boxes
shown, whereas 4 calculations are sufficient when the space
is partitioned as shown in the figure. It is, for instance, not
necessary to compute box B1’s distance to point p2 because
B1 does not intersect the partition that contains p2. Of course,
beyond a certain number of partitions, partitioning again does
not reduce the number of distance calculations much, and the
overhead of handling the large number of partitions causes the
running time to go up. With our datasets, about five partitions
in each dimension (54 = 625 in total) gave the best results.

If a point and a box match, the corresponding parts of the
two genomes have to be aligned. We record this in the match
table, a data structure which (1) provides a memory-efficient
representation of which substrings must be aligned and (2) is
suitable for deciding on an optimal I/O schedule, as described
in the next subsection.

Conceptually, each genome is divided into pages, i.e. non-
overlapping blocks of a fixed size. This is because a page is the
minimum I/O unit, i.e. at least one page is read from the disk
at a time. Fixed-size pages are used because they allow for

Fig. 2. Two-dimensional illustration of the four-dimensional fre-
quency space containing boxes and points, partitioned by the dashed
lines. Only three points and four boxes are shown.

1 2 3 4 5 6 8 97 10 11 12

1
2
3
4
5
6
7

q

s

Fig. 3. Match table for two strings q and s. The black dots identify
true entries.

efficient I/O scheduling, as explained in the next subsection.
A page is not the same as the substring of a box: the box
capacity can be different from the page size, and the substrings
corresponding to two boxes may be overlapping. There is
a many-to-many relationship between boxes and pages: the
substring corresponding to a box may span more than one
page, and (parts of) a page may occur in the substrings of
more than one box.

The match table, illustrated in Figure 3, is a matrix with
one column for each page of the first genome and one row for
each page of the other. In this figure, q has 7 pages and s has
12 pages. Each entry of the match table contains either true or
false, and uses one bit of storage. If a point and a box match,
we mark as true all the entries in the rectangular section of the
match table that corresponds to the substrings represented by
the box and point.

Increasing the page size allows larger genome strings to
be compared in the same amount of memory. For example,
with a page size of 4 kb, it takes 1250 MB of main memory
to compare two 400 Mb genomes, whereas by doubling the
page size to 8 kb, two 800 Mb genomes can be compared
in the same amount of space. On the other hand, a smaller
page size produces a more precise match table, since each

2125

T.Kahveci et al.

entry corresponds to a smaller region in each string. In our
experiments, we set the page size equal to the window size
used in the construction of the F-index.

Our method essentially finds an upper bound to the align-
ment score of substrings of length w. We exploit this to find
local alignment scores of longer strings by partitioning the
strings into substrings. However, this strategy has two disad-
vantages. First, a similar query substring may be split into two
partitions. Second, similarities between substrings of lengths
less than the window size w may be missed. The former prob-
lem can be solved by extending the query substrings once the
query is partitioned. The latter problem can be solved by using
an appropriate window size.

THEORETICAL ANALYSIS
The F-index structure has a small memory footprint and
provides fast distance computation in the frequency domain,
but carries less information than the original string because
the same frequency vector may correspond to multiple sub-
strings. Therefore, searching in the frequency domain may
result in false positives. In this section, we develop the-
oretical formulas to estimate the number of hits for the
F-index.

We analyze the F-index structure in two steps. First, we
estimate the box size for a given box capacity. Second, we
predict the probability of intersection between two boxes,
or between a box and a point.

Estimating box size
Let � = {σ1, σ2, . . . , σ|�|} be the alphabet of the dataset. Let
r = [r1, . . . , r|�|] be the profile for the dataset, where ri is
the rate at which σi occurs. For example, the profile for a
DNA dataset in which the letters are uniformly distributed is
r = [0.25, 0.25, 0.25, 0.25].

We will start by considering the dimension for a single letter
in the alphabet, then extend the analysis to all the letters.
Consider the frequency vector v corresponding to the initial
positioning of the window on the dataset. Let vi = t be the
i-th value of this vector (i.e. the number of σis in the first
window). When the window is slid by one, there are three
possibilities for vi : it can decrease by one, stay the same or
increase by one. This is shown using a state transition diagram
in Figure 4. Here, each node corresponds to a state. The labels
on the nodes represent the value of vi . The labels on the edges
are the probabilities of moving from one state to the other by
sliding the window one position. As the window is slid, vi

traverses a set of consecutive nodes by moving right and left
one node at a time.

We define Pi(n, k, j), for n ≥ k ≥ j ≥ 1, as the probability
that sliding the window n times causes exactly k states to be
traversed in the state transition diagram defined by the rate of
letter σi , and that the final state is the j -th state relative to the
leftmost of the k visited states.

Fig. 4. The state transition diagram for the i-th entry of a frequency
vector.

We define a recurrence function for Pi(n, k, j) to be 1 if
n = 1 and

[1 − 2ri(1 − ri)]Pi(n − 1, k, j) {Stay}
+ ri(1 − ri)Pi(n − 1, k, j − 1) {Move right}
+ ri(1 − ri)Pi(n − 1, k, j + 1) {Move left}
+ ri(1 − ri)Pi(n − 1, k − 1, 1) {Extend left}
+ ri(1 − ri)Pi(n − 1, k − 1, k − 1) {Extend right}

if n > 1.
For a givenn, the value ofPi(n, k, j) can be easily calculated

using dynamic programming for all n ≥ k ≥ j ≥ 1. The
number of states visited after n slides of the window, Li(n),
corresponds to the width of the box along the i-th dimension.
The distribution of this random variable can be computed as

P [Li(n) = k] =
k∑

j=1

Pi(n, k, j).

Estimating hit ratio
We will estimate the probability that a given frequency vector
of a query string overlaps with a given box in the F-index. Let
w and c be the window size and box capacity used to create
the F-index, and let v be the frequency vector of the query
string for a given window position. Notice that 0 ≤ vi ≤ w

for all 1 ≤ i ≤ |�|. Let ri be the rate at which the letter
σi occurs. Then, the probability P(vi = t) that the letter σi

occurs t times in a random positioning of the window is

P(vi = t) =
(w

t

)
rt
i (1 − ri)

w−t .

P(vi = t) is a binomial distribution with rate ri .
Let Li be the size of a box and ui be its mid-point along

the i-th dimension. The probability that a box intersects a
random frequency vector, v, along the i-th dimension is equal
to P(|ui − vt | ≤ Li/2). This probability is given by

P

(
|ui−ui | ≤ Li

2

)
=

w∑
t=0

min{w,t+Li/2}∑
s=max{0,t−Li/2}

P(vi = t)P (ui = s).

2126

Speeding up whole-genome alignment

This probability can be calculated quickly by approximating
the binomial distribution P(vi) using the normal distribution
with mean wri and variance wri(1 − ri). This approximation
is very accurate for large values of w, i.e. for w ≥10 (Ewens
and Grant, 2001).

Using this formula, the probability of intersection between
a box and a point can be calculated as

∑
Li≤min{w,c}
�j Lj ≤2c+σ


 |�|∏

i=1

P

(
|ui − vi | ≤ Li

2

)
 · P(Li).

Computing an estimation for the hit ratio according to this
formula is very costly because the formula is over all possible
box sizes. Therefore, we approximate it by computing the
expected size of a box along each dimension in advance. After
this approximation, the probability of intersection between a
box and a point reduces to

|�|∏
i=1

P

(
|ui − vi | ≤ E(Li)

2

)
.

Experimental validation of analysis
The theoretical formulas assume that the distribution of letters
remains the same as the window is slid over the string. How-
ever, real data may be skewed so that different letters occur at
various frequencies in different regions of a string.

We tested the accuracy of our formulas by running exper-
iments on real DNA strings. We used the genetic code of
Escherichia coli (K-12 MG1655, acc. U00096) and the entire
human genome as the real datasets. E.coli and the human
genome consist of 4.6 million and 2.7 billion bp, respectively.

Figure 5 plots the probability of intersection between a
box and a point generated from the same file for different
box capacities and window sizes. The probability of intersec-
tion drops as the window size increases and the box capacity
decreases. This experiment shows that the skewness of the real
data reduces the probability of intersection. Thus, the actual
pruning obtained for real data is even better than estimated
by our formula using uniform distributions. It is possible to
use our formulas for other distributions, but that is unlikely to
yield better predictions because the distribution function for
the letters varies between different regions of real data.

The window size, w, is a parameter, and should be set to the
length of the shortest alignment that is of interest, as align-
ments shorter than w are not detected reliably. For whole
genome alignment we suggest using w = 2 or 4k.

SCHEDULING DISK I/O
Because the match table identifies all substring pairs that
might be similar, only the substring pairs corresponding to
entries that are marked as true need to be searched. For
example, M1,1 is marked (in Fig. 3), so the first page of the

first string must be compared with the first page of the second
string. Current string alignment tools start by finding seeds
within one of the strings (for instance BLAST finds exactly
matching substrings of length 11).

One could simply construct a hash table on one of the strings
and sequentially scan the parts of the other string that corres-
pond to marked rows or columns. This is an improvement
over other search tools since the search is restricted to the
marked entries. However, if both the strings are very large,
the hash table may not fit into memory, resulting in excessive
random disk I/O. In order to prevent this, we, iteratively, cut
slices from the match table by splitting it either vertically or
horizontally. As the match table is split along a direction, the
corresponding string is also partitioned into shorter strings.
Then, we construct a hash table on the marked pages of the
unsplit string, and sequentially scan the other.

The decision on split direction is made as follows. Let r and
c be the number of marked rows and columns of the match
table. If r < c, then the match table is split vertically. Other-
wise, the match table is split horizontally. The optimality of
our dynamic splitting algorithm can be proved by considering
the expected number of marked entries in each slice.

Figure 6 illustrates the slices obtained from a sample match
table. In this example, we assume that the available memory
can hold three pages. There are nine marked columns and five
marked rows. Since the number of marked columns is larger
than the number of marked rows, MAP chooses a vertical slice
in the first iteration (shown with a rectangle in Fig. 6a). The
slice has two properties: (1) it has at most three rows, and (2) it
is as wide as possible. The first restriction ensures that the hash
table built on the rows fits into memory. The second restriction
forces MAP to process as many entries as possible at each
iteration. The first slice has rows r1, r4 and r5, and columns c1

and c2. BLAST constructs a hash table on the substrings of r1,
r4 and r5. Then it sequentially scans c1 and c2, and searches
their contents within r1, r4 and r5 using the hash table. When
the search is complete, MAP removes the slice from the match
table, and iterates on the rest of it. In the second iteration
(Fig. 6b), the match table contains seven marked columns and
five marked rows. Therefore, MAP splits the table vertically
again. Note that MAP does not need to consider columns c3

and c5, as they do not contain any marked entries. The match
table has four marked columns and five marked rows in the
third iteration (Fig. 6c), so a horizontal split is chosen, and
the hash table is constructed on the columns.

Once a slice is cut from the match table, we iterate through
the split string on a slice-by-slice basis. A page from the split
string is read only if its corresponding row or column contains
at least one true entry in that slice. The pages are read using an
optimal disk read schedule (Seeger, 1996). The optimal disk
read schedule guarantees that the total disk I/O cost of reading
candidate strings is never more than that of a sequential scan.
For example, for the match table in Figure 3, after we cut
a slice horizontally at the third row, we iteratively read q1

2127

T.Kahveci et al.

 0.0001

 0.001

 0.01

 0.1

 1

 100 1000 10000

P
ro

ba
bi

lit
y

of
 in

te
rs

ec
tio

n

Window size

Theoretical, bc=250
Theoretical, bc=500

Theoretical, bc=1000
Human Genome, bc=250
Human Genome, bc=500

Human Genome, bc=1000
E. Coli, bc=250
E. Coli, bc=500

E. Coli, bc=1000

Fig. 5. The theoretical and experimental values for the probability of intersection of a box and a point. A box tightly encloses the frequency
vectors of bc consecutive windows of length w. The experiments are performed on the genetic code of the E.coli bacteria and the entire human
genome separately.

1 2 3 4 5 6 8 97 10 11 12

1
2
3
4
5
6
7

1 2 3 4 5 6 8 97 10 11 12

1
2
3
4
5
6
7

1 2 3 4 5 6 8 97 10 11 12

1
2
3
4
5
6
7

1 2 3 4 5 6 8 97 10 11 12

1
2
3
4
5
6
7

(a) (b) (c) (d)

Fig. 6. The slices determined by the MAP algorithm. We assume that the available memory can store the hash table for at most 3 pages.
(a) and (b) show vertical partitions whereas (c) and (d) show horizontal partitions.

and q3, and search them using the hash table constructed on
s1 and s4.

Figure 7 presents the pseudocode for the MAP algorithm.
The inputs to the program are the match table, the match
table boundaries and the amount of available memory. The
algorithm starts by checking the boundaries. If the match table
is all consumed, it quits (step 1). If there are still unprocessed
regions, the number of marked rows and columns are com-
puted first (steps 2 and 3). If the number of marked rows
is less than the number of marked columns, the algorithm
goes into vertical split mode (step 4); otherwise it switches
to horizontal split mode (step 5). In vertical split mode, the
splitting point is iteratively advanced column-wise unless the

hash table for the slice fits into available memory (step 4a).
The lower boundary for the columns of the match table is
updated (step 4b). A hash table is then constructed on the
marked rows of the slice (step 4c), and a search is performed
by reading the marked columns of the slice using optimal disk
scheduling (step 4d). Horizontal partitioning is performed in
a similar fashion. The MAP search algorithm is then called
recursively on the remaining match table (step 6).

EXPERIMENTAL EVALUATION
Our experiments, which assess the performance of MAP, were
performed on computers with two AMD Athlon MP 1800+

2128

Speeding up whole-genome alignment

Fig. 7. The MAP search algorithm. The algorithm takes a match
table, the boundaries of the search region, and the available buffer
size as input. Later the search region is partitioned and aligned based
on these parameters.

processors and 1- or 2-GB main memory, running Linux
2.4.19. In all experiments, unless otherwise noted, the page
size and window size were set to 4 kb, and the error rate to 1%.

Quality comparison
Figure 8(a) shows the match table constructed for aligning
the genomes of two strains of E.coli (K-12 MG1655, acc.
U00096; O157:H7, acc. BA000007). The diagonal run of
marked entries depicts the similarity patterns. The genomes
are about 5 Mb, but MAP created the match table in less than
a second. Figure 8b–d show the match table for the same
strings when one of the strings is altered by translocation of
two substrings, inversion of one substring, and duplication of
one substring, respectively. These figures show that our match
table can locate translocations, inversions and duplications
quickly without aligning the strings. Figures like these provide
scientists with a quick visualization of the similarity patterns
between two strings without actually aligning them.

Figure 9 shows a similar picture generated from the actual
alignments of the two strains of E.coli, as computed by
BLAST. Each alignment is represented by a line between
the points corresponding to the alignment’s start and end
positions. The similarity to Figure 8(a) shows that the match
table provides an accurate view of the similarities between the
strings.

We also compared the complete genomes of two strains
of Streptococcus pneumoniae (R6, NC_003098; TIGR4,
NC_003028) with BLAST and MAP. The window size for
MAP was set to 4 kB. In this experiment we observed that
MAP and BLAST give results of similar quality, but that MAP
misses parts of a few of the long alignments.

These are alignments that are cut in two by the slices of the
match table. It is possible to stitch together the fragments in
a postprocessing step.

Our final quality experiment quantifies the alignments found
by BLAST but missed by MAP. We ran BLAST and MAP on
two strains of E.coli (K-12 MG1655, acc. U00096; O157:H7,
acc. BA000007). BLAST was run with default parameters,
whereas MAP was run with w = 4096 and ε = 1 and 2%. For
each BLAST alignment, we computed the percentage of the
alignment that was also found by MAP. For each score S in the
BLAST result set, we computed the average of such percent-
ages over all BLAST alignments scoring at leastS. The results,
plotted in Figure 10, show that MAP has a 100% recall for
high-scoring alignments. As the score drops, so does MAP’s
recall. This is because lower-scoring alignments usually con-
tain more mismatches and indels. Lower-scoring alignments
can be detected reliably by running MAP with a higher
ε-value, but this has the side effect of increasing the dens-
ity of the match table, and thus MAP’s running time. (In the
worst case, i.e. when ε = 1.0, all the entries of the match table
get marked. In this case, MAP’s speed becomes the same as
that of BLAST.) Even for alignments as short as 4096, MAP’s
recall is more than 95 and 97% (for ε = 1 and 2%, respect-
ively). This experiment shows that MAP misses only a small
percentage of BLAST’s local alignments for similar strings.
We achieved similar results in the comparison of two strains
of S.pneumoniae (R6, NC_003098; TIGR4, NC_003028).
However, MAP’s recall varied between 75 and 100% for
alignment of distant strings such as Homo sapiens 12p13
(U47924) and Mus musculus chromosome 6 (AC0002397).

Performance comparison
To test the performance of our MAP program, we measured
the time to compute the match table for strings of length from
50 to 450 Mb. The strings were prefixes of the M.musculus
genome (the chromosomes from NCBIs build 30 catenated).
We used a static box capacity of 1000 points and a window
size of w = 4k. Figure 11 shows that the time to compute the
match table is less than quadratic. The match table for two
450 Mb strings is computed in only 270 s.

2129

T.Kahveci et al.

(a) (b)

(c) (d)

Fig. 8. (a) Match table created by MAP for aligning the genomes of two strains of E.coli. The points correspond to marked entries of the
match table. Match table for the same strings when one of the strings is altered by (b) translocation of two substrings, (c) inversion of one
substring, and (d) duplication of one substring.

The amount of memory required to compute a match table
increases quadratically, from 20 MB for two 50 Mb strings to
1.5 GB for two 450 Mb strings. This is negligible compared
to the size of the hash table a BLAST-like technique would
construct: BLAST could not even align two strings of <20 Mb
each on our 1-GB machine (Table 1).

Our match table achieved a high amount of pruning. On
average, only 3.7% of the match table entries were marked
in this experiment. We obtained slightly different pruning
rates for two strains of E.coli (K-12 MG1655, acc. U00096;
O157:H7, acc. BA000007). In this case, 7.5% of the entries
were marked.

Constructing the match table is only one phase of MAP:
the match table will also need to be sliced, and BLAST run
on each slice. To compare BLAST and MAP, we aligned a
number of strings, from 200 kb to 20 Mb, with both, and
measured the memory consumption and running times. The

results are shown in Table 1. For MAP, we used a static box
capacity of 1000. BLAST did not complete the alignment
of Arabidopsis thaliana chromosomes 2 and 4 in 10 days;
nor could it align the much smaller H.sapiens chromosome
18 to itself in the same amount of time. The memory usage
of BLAST for the last two lines of this table was >1 GB,
the available memory on our computer. For short strings,
the memory usage of BLAST is better than BLASTZ. How-
ever, as strings get longer, BLASTZ uses less memory than
BLAST. The running time of BLASTZ is more than BLAST
for the first six experiments. However, BLASTZ outperforms
BLAST for the self-alignment of H.sapiens chromosome 18
and the alignment of chromosomes 2 and 4 of A.thaliana.
This is because, unlike BLASTZ, the memory consumption
of BLAST exceeds the amount of available memory.

The times for MAP in Table 1 are higher than necessary
because the BLAST program being run on the partitions

2130

Speeding up whole-genome alignment

Fig. 9. The alignment of two strains of E.coli by BLAST.

 0

 20

 40

 60

 80

 100

 0 20000 40000 60000 80000 100000 120000 140000 160000

C
um

ul
at

iv
e

re
ca

ll
[%

]

Score

eps = 1 %
eps = 2 %

Fig. 10. The cumulative recall of MAP over BLAST’s local alignments of length at least w = 4096 for ε = 1 and 2% for the local alignment
of two strains of E.coli (K-12 MG1655, acc. U00096; O157:H7, acc. BA000007).

2131

T.Kahveci et al.

 0

 50

 100

 150

 200

 250

 300

 50 100 150 200 250 300 350 400 450

T
im

e
[s

]

Length of each string [Mbp]

Fig. 11. Time to compute the match table for strings of different length.

Table 1. Running time and memory usage for BLAST and MAP for a number of smaller datasets

String 1 String 2 BLAST BLASTZ MAP Match table
Description Len. Description Len. Mem. Time Mem. Time Mem. Time Mem. Time

H.sapiens 12p13a 0.22 M.musculus chr. 6b 0.22 16 3 74 36 6 2 0.06 0
M.genitaliumc 0.57 M.pneumoniaed 0.8 46 6 108 27 29 5 0.1 0
S.pneumoniae R6e 2.0 S.pneumoniae TIGR4f 2.1 175 478 150 717 17 97 0.2 0
H.influenzae Rdg 1.8 E.colih 4.6 290 45 140 105 89 31 0.38 0
M.tuberculosis CDC1551i 4.4 M.tuberculosis H37Rvj 4.4 320 456 1230 106,687 13 338 0.45 1
E.coli K-12 MG1655h 4.6 E.coli 157:H7k 5.5 380 614 263 827 17 364 0.53 1
H.sapiens chr. 18l 4.2 H.sapiens chr. 18l 4.2 920 ∞ 850 615,677 25 540 0.44 1
A.thaliana chr. 2m 19.9 A.thaliana chr. 4n 17.8 ∞ ∞ 704 15,678 56 9870 3.6 5

The columns for MAP include running BLAST on the partitions. The match table columns include creating the match table. The units for string lengths, memory consumption, and
time are Mb, MB and seconds respectively.
aU47924, bAC0002397, cL43967, dNC_000912, eNC_003098, fNC_003028, gL42023, hU00096, iAE000516, jAL123456, kBA000007, lNT_000864, mAC_006837,
nAL_161471.

performs much more work than is needed. This is because,
although BLAST can be instructed to limit itself to certain
sections of the input, there is no way to specify that only
the substring pairs corresponding to the marked entries in
the match table should be searched. Thus, BLAST proceeds
as if every entry in the partition were marked in our MAP
implementation.

One way to reduce the memory consumption of BLAST is to
partition one or both of the strings into substrings without any
prior information about the strings and run a BLAST on each
of these substrings. Our simple ‘black box’ implementation
of MAP is still superior to this partitioning in a number of
ways. First, partitioning the data based on the match table

prunes large unmarked regions, thus it avoids searching the
entire string. Second, the match table depicts a coarse-grained
visualization of the actual alignment. Based on the diagonal
runs and dense regions, a user may restrict the alignment to a
smaller substring. This is important, especially for very long
strings. For example, MAP computes the match table for two
450 Mb strings in only 270 s. If only a small percentage of
bases are correlated in these strings, then the user can see this
by inspecting the match table and align only those substrings.

To account for the time difference of MAP in Table 1,
we performed an experiment where MAP, instead of hand-
ing the partitions to BLAST, handed them to a simulator.
Based on the amount of memory available—a parameter of

2132

Speeding up whole-genome alignment

 10

 100

 1000

 10000

 0 1000 2000 3000 4000 5000 6000 7000

T
im

e
[s

]

Memory size [kB]

BLAST
MAP

Fig. 12. The total time for BLAST and MAP to align two strains of E.coli (K-12 MG1655, acc. U00096; O157:H7, acc. BA000007). for
different memory sizes.

the experiment—the simulator counted the number of disk
seeks and reads necessary to align the marked entries in the
partition. From these numbers and measurements of average
seek times and read rates for our machine, we calculated the
total cost. Figure 12 shows the total costs, according to this
model, for aligning two strains of E.coli (K-12 MG1655, acc.
U00096; O157:H7, acc. BA000007) with MAP and with
BLAST. The total cost of MAP in this figure includes the cost
of creating and partitioning the match table, in addition to
aligning the strings. In this experiment, to BLAST’s advant-
age, we set BLAST to construct the hash table on the shorter
string (i.e. mouse chromosome 18). For the memory sizes
considered, MAP performed up to two orders of magnitude
better than BLAST.

Dynamic indexing strategies
So far, we have used a static box capacity in the construction
of the F-index. One way to improve the F-index is to use a
dynamic strategy based on the distribution of the frequency
vectors. We implemented the following dynamic strategies:

• Fixed volume. Keep adding points to a box until its
volume exceeds a certain threshold.

• Fixed density. Keep adding points until n/V , the number
of points divided by the volume of the box, falls below a
certain threshold.

• MHIST-Volume. Start with one big box containing all the
points. Find the position to split the box such that the sum
of the volumes of two new boxes is minimized, but the

points in each box still correspond to consecutive posi-
tions of the sliding window on the string. Keep splitting
the box with the largest volume to get the desired number
of boxes.

• MHIST-Density. Like MHIST-Volume, but split a box
in to two new boxes i and j such that the total density,
ni/Vi +ni/Vj , is maximized. Keep splitting the box with
lowest density.

The match table construction time for Volume and MHIST-
Volume are 10–18% less than the time for the Static strategy. In
terms of pruning rate, the Static, Volume and MHIST-Volume
strategies were almost identical, and they gave the best results.
On the other hand, the dynamic strategies require more time
and space to construct the F-index. We recommend the use
of the static strategy since the size of the index structure is
smaller and its performance is very close to the best dynamic
strategy.

We can summarize the experimental results as follows:
(1) the output quality of MAP is very close to that of BLAST,
(2) MAP is up to two orders of magnitude faster than BLAST
and (3) MAP works well even for small memory sizes.

DISCUSSION
In this paper, we have considered the problem of finding local
alignments for huge genome strings. We have presented an
algorithm that computes scores in the frequency domain and
an algorithm that finds local alignments between two strings.

2133

T.Kahveci et al.

The algorithm constructs a match table, a boolean matrix in
which an entry is marked as true if the corresponding sub-
strings may be similar, and false otherwise. The match table
is the basis for pruning and for partitioning the search such that
each partition can be searched in memory by an existing tool
such as BLAST. The match table also serves as a visualization
of the similarity between the strings prior to actual alignment.

In our experiments, we used BLAST (Altschul et al., 1990)
for comparison. According to our experimental results, MAP
runs up to two orders of magnitude faster than BLAST.
Furthermore, MAP can work well even with long strings and
little memory. MAP achieves these performance improve-
ments while keeping the quality of the resulting answer set
very close to that of BLAST.

MAP is a very general technique, in the sense that its match-
table-based pruning and dynamic splitting scheme can be used
to improve any of the current string search tools. Hence, one
can view MAP as a technique that improves the available
techniques instead of as a competitor to these techniques. It
is also trivial to extend our method to global alignments. We
solved a similar problem in Kahveci and Singh (2001).

Aligning large genome strings is an important emerging
application. The explosive growth of these datasets and the
complexity of computing matches makes it imperative that
faster disk-resident techniques be devised. The techniques
presented in this paper are an important step in this regard,
and should be widely applicable.

ACKNOWLEDGEMENTS
This work was supported in part by grants EIA-0080134 and
DBI-0213903 from the National Science Foundation.

REFERENCES
Altschul,S.F., Gish,W., Miller,W., Meyers,E.W. and Lipman,D.J.

(1990) Basic local alignment search tool. J. Mol. Biol., 215,
403–410.

Batzoglou,S., Pachter,L., Mesirov,J.P., Berger,B. and Lander,E.S.
(2000) Human and mouse gene structure: comparative analysis
and application to exon prediction. Genome Res., 10, 950–958.

Bray,N., Dubchak,I. and Pachter,L. (2003) AVID: a global alignment
program. Genome Res., 13, 97–102.

Brudno,M., Do,C., Cooper,G., Kim,M., Davydov,E.,
Program,N.C.S., Green,E., Sidow,A. and Batzoglou,S. (2003)
LAGAN and Multi-LAGAN: efficient tools for large-scale
multiple alignment of genomic DNA. Genome Res., 13, 721–731.

Brudno,M., Malde,S., Poliakov,A., Do,C., Couronne,O., Dubchak,I.
and Batzoglou,S. (2003) Glocal alignment: finding rearrange-
ments during alignment. Bioinformatics, 19, 54i–62i.

Brudno,M. and Morgenstern,B. (2002) Fast and sensitive alignment
of large genomic sequences. In CSB. Stanford, CA, August 2002,
p. 138.

Burkhardt,S., Crauser,A., Ferragina,P., Lenhof,H.-P., Rivals,E. and
Vingron,M. (1999) Q-gram based database searching using a

suffix array (QUASAR). In RECOMB. ACM Press, France,
pp. 77–83.

Califano,A. and Rigoutsos,I. (1993) FLASH: A fast look-up
algorithm for string homology. In ISMB, Bethesda, MD, pp.56–64.

Delcher,A.L., Kasif,S., Fleischmann,R.D., Peterson,J., White,O. and
Salzberg,S.L. (1999) Alignment of whole genomes. Nucleic Acids
Res., 27, 2369–2376.

Ewens,W.J. and Grant,G.R. (2001) Statistical Methods in Bioinform-
atics: An Introduction. Springer, New York.

Gish,W. (1995) WU-BLAST. http://blast.wustl.edu/.
Gusfield,D. (1997) Algorithms on Strings, Trees, and Sequences.

Cambridge University Press.
Huang,X. and Miller,W. (1991) A time-efficient, linear-space local

similarity algorithm. Adv. Appl. Math. 12, 337–357.
Kahveci,T. and Singh,A.K. (2001) An efficient index structure for

string databases. In VLDB. Morgan Kaufmann, Roma, Italy,
September 2001, pp. 351–360.

Kent,W.J. (2002) BLAT—the BLAST-like alignment tool. Genome
Res., 12, 656–664.

Kurtz,S. and Schleiermacher,C. (1999) REPuter: fast computation
of maximal repeats in complete genomes. Bioinformatics, 15,
426–427.

Ma,B., Tromp,J. and Li,M. (2002) PatternHunter: faster and more
sensitive homology search. Bioinformatics, 18, 440–445.

Morgenstern,B. (1999) DIALIGN 2: improvement of the
segment-to-segment approach to multiple sequence alignment.
Bioinformatics, 15, 211–218.

Morgenstern,B., Frech,K., Dress,A. and Werner,T. (1998)
DIALIGN: finding local similarities by multiple sequence align-
ment. Bioinformatics, 14, 290–294.

Myers,E.W. (1986) An O(ND) difference algorithm and its vari-
ations. Algorithmica, 1, 251–266.

Needleman,S. and Wunsch,C. (1970) A general method applicable
to the search for similarities in the amino acid sequences of two
proteins. J. Mol. Biol., 48, 443–453.

Pearson,W. and Lipman,D. (1988) Improved tools for biological
sequence comparison. Proc. Natl Acad. Sci., USA, 85, 2444–2488.

Piatetsky-Shapiro,G. and Connell,C. (1984) Accurate estimation of
the number of tuples satisfying a condition. In SIGMOD, ACM
Press. Boston, MA, pp. 256–276.

Schwartz,S., Zhang,Z., Frazer,K.A., Smit,A., Riemer,C., Bouck,J.,
Gibbs,R., Hardison,R. and Miller,W. (2000) PipMaker—a web
server for aligning two genomic DNA sequences. Genome Res.,
10, 577–586.

Seeger,B. (1996) An analysis of schedules for performing multi-page
requests. Inform. Syst., 21, 387–407.

Smith,T. and Waterman,M. (1981) Identification of common molecu-
lar subsequences. J. Mol. Biol., 147, 195–197.

States,D.J. and Agarwal,P. (1996) Compact encoding strategies for
DNA sequence similarity search. In ISMB. AAAI, St Louis, MO,
June 1998, pp. 211–217.

Tatusova,T.A. and Madden,T.L. (1999) BLAST 2 SEQUENCES, a
new tool for comparing protein and nucleotide sequences. FEMS
Microbiol. Lett., 174, 247–250.

Zhang,Z., Schwartz,S., Wagner,L. and Miller,W. (2000) A greedy
algorithm for aligning DNA sequences. J. Comput. Biol., 7,
203–214.

2134

http://blast.wustl.edu/

